915 research outputs found

    How citation boosts promote scientific paradigm shifts and Nobel Prizes

    Get PDF
    Nobel Prizes are commonly seen to be among the most prestigious achievements of our times. Based on mining several million citations, we quantitatively analyze the processes driving paradigm shifts in science. We find that groundbreaking discoveries of Nobel Prize Laureates and other famous scientists are not only acknowledged by many citations of their landmark papers. Surprisingly, they also boost the citation rates of their previous publications. Given that innovations must outcompete the rich-gets-richer effect for scientific citations, it turns out that they can make their way only through citation cascades. A quantitative analysis reveals how and why they happen. Science appears to behave like a self-organized critical system, in which citation cascades of all sizes occur, from continuous scientific progress all the way up to scientific revolutions, which change the way we see our world. Measuring the "boosting effect" of landmark papers, our analysis reveals how new ideas and new players can make their way and finally triumph in a world dominated by established paradigms. The underlying "boost factor" is also useful to discover scientific breakthroughs and talents much earlier than through classical citation analysis, which by now has become a widespread method to measure scientific excellence, influencing scientific careers and the distribution of research funds. Our findings reveal patterns of collective social behavior, which are also interesting from an attention economics perspective. Understanding the origin of scientific authority may therefore ultimately help to explain, how social influence comes about and why the value of goods depends so strongly on the attention they attract.Comment: 6 pages, 6 figure

    Single Gene Deletions of Orexin, Leptin, Neuropeptide Y, and Ghrelin Do Not Appreciably Alter Food Anticipatory Activity in Mice

    Get PDF
    Timing activity to match resource availability is a widely conserved ability in nature. Scheduled feeding of a limited amount of food induces increased activity prior to feeding time in animals as diverse as fish and rodents. Typically, food anticipatory activity (FAA) involves temporally restricting unlimited food access (RF) to several hours in the middle of the light cycle, which is a time of day when rodents are not normally active. We compared this model to calorie restriction (CR), giving the mice 60% of their normal daily calorie intake at the same time each day. Measurement of body temperature and home cage behaviors suggests that the RF and CR models are very similar but CR has the advantage of a clearly defined food intake and more stable mean body temperature. Using the CR model, we then attempted to verify the published result that orexin deletion diminishes food anticipatory activity (FAA) but observed little to no diminution in the response to CR and, surprisingly, that orexin KO mice are refractory to body weight loss on a CR diet. Next we tested the orexigenic neuropeptide Y (NPY) and ghrelin and the anorexigenic hormone, leptin, using mouse mutants. NPY deletion did not alter the behavior or physiological response to CR. Leptin deletion impaired FAA in terms of some activity measures, such as walking and rearing, but did not substantially diminish hanging behavior preceding feeding time, suggesting that leptin knockout mice do anticipate daily meal time but do not manifest the full spectrum of activities that typify FAA. Ghrelin knockout mice do not have impaired FAA on a CR diet. Collectively, these results suggest that the individual hormones and neuropepetides tested do not regulate FAA by acting individually but this does not rule out the possibility of their concerted action in mediating FAA

    MAB21L1 loss of function causes a syndromic neurodevelopmental disorder with distinctive cerebellar, ocular, craniofacial and genital features (COFG syndrome).

    Get PDF
    BACKGROUND: Putative nucleotidyltransferase MAB21L1 is a member of an evolutionarily well-conserved family of the male abnormal 21 (MAB21)-like proteins. Little is known about the biochemical function of the protein; however, prior studies have shown essential roles for several aspects of embryonic development including the eye, midbrain, neural tube and reproductive organs. OBJECTIVE: A homozygous truncating variant in MAB21L1 has recently been described in a male affected by intellectual disability, scrotal agenesis, ophthalmological anomalies, cerebellar hypoplasia and facial dysmorphism. We employed a combination of exome sequencing and homozygosity mapping to identify the underlying genetic cause in subjects with similar phenotypic features descending from five unrelated consanguineous families. RESULTS: We identified four homozygous MAB21L1 loss of function variants (p.Glu281fs*20, p.Arg287Glufs*14 p.Tyr280* and p.Ser93Serfs*48) and one missense variant (p.Gln233Pro) in 10 affected individuals from 5 consanguineous families with a distinctive autosomal recessive neurodevelopmental syndrome. Cardinal features of this syndrome include a characteristic facial gestalt, corneal dystrophy, hairy nipples, underdeveloped labioscrotal folds and scrotum/scrotal agenesis as well as cerebellar hypoplasia with ataxia and variable microcephaly. CONCLUSION: This report defines an ultrarare but clinically recognisable Cerebello-Oculo-Facio-Genital syndrome associated with recessive MAB21L1 variants. Additionally, our findings further support the critical role of MAB21L1 in cerebellum, lens, genitalia and as craniofacial morphogenesis

    Zinc intake, status and indices of cognitive function in adults and children: a systematic review and meta-analysis

    Get PDF
    In developing countries, deficiencies of micronutrients are thought to have a major impact on child development; however, a consensus on the specific relationship between dietary zinc intake and cognitive function remains elusive. The aim of this systematic review was to examine the relationship between zinc intake, status and indices of cognitive function in children and adults. A systematic literature search was conducted using EMBASE, MEDLINE and Cochrane Library databases from inception to March 2014. Included studies were those that supplied zinc as supplements or measured dietary zinc intake. A meta-analysis of the extracted data was performed where sufficient data were available. Of all of the potentially relevant papers, 18 studies met the inclusion criteria, 12 of which were randomised controlled trials (RCTs; 11 in children and 1 in adults) and 6 were observational studies (2 in children and 4 in adults). Nine of the 18 studies reported a positive association between zinc intake or status with one or more measure of cognitive function. Meta-analysis of data from the adult’s studies was not possible because of limited number of studies. A meta-analysis of data from the six RCTs conducted in children revealed that there was no significant overall effect of zinc intake on any indices of cognitive function: intelligence, standard mean difference of <0.001 (95% confidence interval (CI) –0.12, 0.13) P=0.95; executive function, standard mean difference of 0.08 (95% CI, –0.06, 022) P=0.26; and motor skills standard mean difference of 0.11 (95% CI –0.17, 0.39) P=0.43. Heterogeneity in the study designs was a major limitation, hence only a small number (n=6) of studies could be included in the meta-analyses. Meta-analysis failed to show a significant effect of zinc supplementation on cognitive functioning in children though, taken as a whole, there were some small indicators of improvement on aspects of executive function and motor development following supplementation but high-quality RCTs are necessary to investigate this further

    Skeletal Muscle NADPH Oxidase Is Increased and Triggers Stretch-Induced Damage in the mdx Mouse

    Get PDF
    Recent studies have shown that oxidative stress contributes to the pathogenesis of muscle damage in dystrophic (mdx) mice. In this study we have investigated the role of NADPH oxidase as a source of the oxidative stress in these mice. The NADPH oxidase subunits gp91phox, p67phox and rac 1 were increased 2–3 fold in tibilais anterior muscles from mdx mice compared to wild type. Importantly, this increase occurred in 19 day old mice, before the onset of muscle necrosis and inflammation, suggesting that NADPH oxidase is an important source of oxidative stress in mdx muscle. In muscles from 9 week old mdx mice, gp91phox and p67phox were increased 3–4 fold and NADPH oxidase superoxide production was 2 times greater than wild type. In single fibers from mdx muscle NADPH oxidase subunits were all located on or near the sarcolemma, except for p67phox,which was expressed in the cytosol. Pharmacological inhibition of NADPH oxidase significantly reduced the intracellular Ca2+ rise following stretched contractions in mdx single fibers, and also attenuated the loss of muscle force. These results suggest that NADPH oxidase is a major source of reactive oxygen species in dystrophic muscle and its enhanced activity has a stimulatory effect on stretch-induced Ca2+ entry, a key mechanism for muscle damage and functional impairment

    HIV prevention costs and program scale: data from the PANCEA project in five low and middle-income countries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Economic theory and limited empirical data suggest that costs per unit of HIV prevention program output (unit costs) will initially decrease as small programs expand. Unit costs may then reach a nadir and start to increase if expansion continues beyond the economically optimal size. Information on the relationship between scale and unit costs is critical to project the cost of global HIV prevention efforts and to allocate prevention resources efficiently.</p> <p>Methods</p> <p>The "Prevent AIDS: Network for Cost-Effectiveness Analysis" (PANCEA) project collected 2003 and 2004 cost and output data from 206 HIV prevention programs of six types in five countries. The association between scale and efficiency for each intervention type was examined for each country. Our team characterized the direction, shape, and strength of this association by fitting bivariate regression lines to scatter plots of output levels and unit costs. We chose the regression forms with the highest explanatory power (R<sup>2</sup>).</p> <p>Results</p> <p>Efficiency increased with scale, across all countries and interventions. This association varied within intervention and within country, in terms of the range in scale and efficiency, the best fitting regression form, and the slope of the regression. The fraction of variation in efficiency explained by scale ranged from 26% – 96%. Doubling in scale resulted in reductions in unit costs averaging 34.2% (ranging from 2.4% to 58.0%). Two regression trends, in India, suggested an inflection point beyond which unit costs increased.</p> <p>Conclusion</p> <p>Unit costs decrease with scale across a wide range of service types and volumes. These country and intervention-specific findings can inform projections of the global cost of scaling up HIV prevention efforts.</p

    Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding

    Get PDF
    We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics

    MINPP1 prevents intracellular accumulation of the chelator inositol hexakisphosphate and is mutated in Pontocerebellar Hypoplasia

    Get PDF
    Inositol polyphosphates are vital metabolic and secondary messengers, involved in diverse cellular functions. Therefore, tight regulation of inositol polyphosphate metabolism is essential for proper cell physiology. Here, we describe an early-onset neurodegenerative syndrome caused by loss-of-function mutations in the multiple inositol-polyphosphate phosphatase 1 gene (MINPP1). Patients are found to have a distinct type of Pontocerebellar Hypoplasia with typical basal ganglia involvement on neuroimaging. We find that patient-derived and genome edited MINPP1−/− induced stem cells exhibit an inefficient neuronal differentiation combined with an increased cell death. MINPP1 deficiency results in an intracellular imbalance of the inositol polyphosphate metabolism. This metabolic defect is characterized by an accumulation of highly phosphorylated inositols, mostly inositol hexakisphosphate (IP6), detected in HEK293 cells, fibroblasts, iPSCs and differentiating neurons lacking MINPP1. In mutant cells, higher IP6 level is expected to be associated with an increased chelation of intracellular cations, such as iron or calcium, resulting in decreased levels of available ions. These data suggest the involvement of IP6-mediated chelation on Pontocerebellar Hypoplasia disease pathology and thereby highlight the critical role of MINPP1 in the regulation of human brain development and homeostasis

    Men's values-based factors on prostate cancer risk genetic testing: A telephone survey

    Get PDF
    BACKGROUND: While a definitive genetic test for Hereditary Prostate Cancer (HPC) is not yet available, future HPC risk testing may become available. Past survey data have shown high interest in HPC testing, but without an in-depth analysis of its underlying rationale to those considering it. METHODS: Telephone computer-assisted interviews of 400 men were conducted in a large metropolitan East-coast city, with subsequent development of psychometric scales and their correlation with intention to receive testing. RESULTS: Approximately 82% of men interviewed expressed that they "probably" or "definitely" would get genetic testing for prostate cancer risk if offered now. Factor analysis revealed four distinct, meaningful factors for intention to receive genetic testing for prostate cancer risk. These factors reflected attitudes toward testing and were labeled "motivation to get testing," "consequences and actions after knowing the test result," "psychological distress," and "beliefs of favorable outcomes if tested" (α = 0.89, 0.73, 0.73, and 0.60, respectively). These factors accounted for 70% of the total variability. The domains of motivation (directly), consequences (inversely), distress (inversely), and positive expectations (directly) all correlated with intention to receive genetic testing (p < 0.001). CONCLUSIONS: Men have strong attitudes favoring genetic testing for prostate cancer risk. The factors most associated with testing intention include those noted in past cancer genetics studies, and also highlights the relevance in considering one's motivation and perception of positive outcomes in genetic decision-making

    A retrospective population-based study of childhood hospital admissions with record linkage to a birth defects registry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Using population-based linked records of births, deaths, birth defects and hospital admissions for children born 1980–1999 enables profiles of hospital morbidity to be created for each child.</p> <p>Methods</p> <p>This is an analysis of a state-based registry of birth defects linked to population-based hospital admission data. Transfers and readmissions within one day could be taken into account and treated as one episode of care for the purposes of analyses (N = 485,446 children; 742,845 non-birth admissions).</p> <p>Results</p> <p>Children born in Western Australia from 1980–1999 with a major birth defect comprised 4.6% of live births but 12.0% of non-birth hospital admissions from 1980–2000. On average, the children with a major birth defect remained in hospital longer than the children in the comparison group for the same diagnosis. The mean and median lengths of stay (LOS) for admissions before the age of 5 years have decreased for all children since 1980. However, the mean number of admissions per child admitted has remained constant at around 3.8 admissions for children with a major birth defect and 2.2 admissions for all other children.</p> <p>Conclusion</p> <p>To gain a true picture of the burden of hospital-based morbidity in childhood, admission records need to be linked for each child. We have been able to do this at a population level using birth defect cases ascertained by a birth defects registry. Our results showed a greater mean LOS and mean number of admissions per child admitted than previous studies. The results suggest there may be an opportunity for the children with a major birth defect to be monitored and seen earlier in the primary care setting for common childhood illnesses to avoid hospitalisation or reduce the LOS.</p
    corecore